S0049-3848(14)00284-9

Original Article

Effect of Nano-Titanium Dioxide Polymorphs Priming on Seed Germination and Seedling Growth of French Bean (Phaseolus vulgaris L.)

Year: 2019 | Month: June | Volume 12 | Issue 2

References (16)

1.Byun, D., Kim, Y., Lee, K. and Hofmann, P. 2002. Photocatalytic TiO2 deposition by chemical vapor deposition. J. Haz. Mater., 78(1): 184-188.

View at Google Scholar

2.Dehkourdi, E.H. and Mosavi, M. 2013. Effect of anatase nanoparticles (TiO2 ) on parsley seed germination (Petroselinum crispum) in vitro. Biol. Trace. Elem. Res., 155: 283–286

View at Google Scholar

3.Feizi, H., Moghaddam, P.R., Shahtahmassebi, N. and Fotovat, A. 2012. Impact of bulk and nanosized titanium dioxide (TiO2 ) on wheat seed germination and seedling growth. Biol. Trace Elem. Res., 146: 101–106

View at Google Scholar

4.Feizi, H., Moghaddam, P.R., Shahtahmassebi, N. and Fotovat, A. 2013. Assessment of concentrations of nano and bulk iron oxideparticles on early growth of wheat (Triticum aestivum L.). Ann. Rev. Res. Biol., 3: 752–761

View at Google Scholar

5.Granito, M., Paolini M. and Pérez S. 2008. Polyphenols and antioxidant capacity of Phaseolus vulgaris stored under extreme conditions and processed LWT. Food Sci Technol, 41: 994–999

View at Google Scholar

6.Haghighi, M. and DaSilva, J.A.T. 2014. The effect of N-TiO2 on tomato onion, and radish seed germination. J. Crop Sci. Biotechnol., 17: 221–227

View at Google Scholar

7.Khot, L.R., Sankaran, S., Mari Maja, J., Ehsani, R. and Schuster, E.W. 2012. Applications of nano materials in agricultural production and crop protection: A review. Crop Prot. 35: 64-70.

View at Google Scholar

8.Jiang, F., Shen Y., Ma C., Zhang, X., Cao, W. and Rui, Y. 2017. Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PLOS ONE, 12 (5): 1-14

View at Google Scholar

9.Kim, J.H., Oh, Y., Yoon, H., Hwang, I. and Chang, I.Y.S. 2015. Iron nanoparticle-induced activation of plasma membrane H+ ATPase promotes stomatal opening in Arabidopsis thaliana. Environ. Sci. Technol., 49(2):1113-1119

View at Google Scholar

10.Kutoš, T., Golob, T., Kač, M. and Plestenjak, A. 2003. Dietary fibre content of dry and processed beans. Food Chem., 80: 231–235

View at Google Scholar

11.Nel, A., Xia, T., Madler, L. and Li, N. 2006. Toxic potential of materials at the nanolevel. Science, 311: 622–627

View at Google Scholar

12.Roco, M. C. 2003. Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol., 14: 337–346.

View at Google Scholar

13.Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J. and Lee, E .J. 2013. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol. Environ. Saf., 93: 60–67.

View at Google Scholar

14.Song, U., Shin, M., Lee, G., Roh, J., Kim, Y. and Lee, E.J. 2013. Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol. Trace Elem. Res., 155: 93–103.

View at Google Scholar

15.Yang, F., Hang, F.S., You, W.J., Liu, C., Gao, F.Q. Wu, C. and Yang, P. 2006. Influence of nano anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res., 110: 179-190

View at Google Scholar

16.Zheng, L., Hong, F., Lu, S. and Liu, C. 2005. Effect of nanoTiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res., 105: 83–91.

View at Google Scholar

International Journal of Agriculture Environment & Biotechnology(IJAEB)| In Association with AAEB

27087292 - Visitors since February 20, 2019